ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 331 HÜDAVERDİ TOZAN **S**PRING 2013

twenty seve

KYLE FIELD

Bright Football Complex www.tamu.edu

Foundation

 the engineered interface between the earth and the structure it supports that transmits the loads to the soil or rock

Structural vs. Foundation Design

- structural design
 - choice of materials
 - choice of framing system
 - uniform materials and quality assurance
 - design largely independent of geology, climate, etc.

Structural vs. Foundation Design

- foundation design
 - cannot specify site materials
 - site is usually predetermined
 - framing/structure predetermined
 - site geology influences foundation choice
 - no site the same
 - no designthe same

Soil Properties & Mechanics

- unit weight of soil
- allowable soil pressure
- factored net soil pressure
- shear resistance
- backfill pressure
- cohesion & friction of soil
- effect of water
- settlement
- rock fracture behavior

Soil Properties & Mechanics

- compressibility
 - settlements
- strength
 - stability
 - shallow foundations
 - deep foundations
 - slopes and walls
 - ultimate bearing capacity, q_u
 - allowable bearing capacity, $q_a =$

finehomebuilding.com

Soil Properties & Mechanics

• strength, qa

Class of material	Loadbearing pressure (pounds per square foot) ^a
1. Crystalline bedrock	12,000
2. Sedimentary rock	6,000
3. Sandy Gravel	5,000
4. Sand, silty sand, clayey sand, silty	
gravel and clayey gravel	3,000
5. Clay, sandy clay, silty clay & clayey silt	2,000

FIGURE 2.5

Presumptive surface bearing values of various soils, as given in the BOCA National Building Code/1996. (Reproduced by permission)

Bearing Failure

shear

Lateral Earth Pressure

passive vs. active

Foundation Materials

- concrete, plain or reinforced
 - shear
 - bearing capacity
 - bending
 - embedment length, development length
- other materials (piles)
 - steel
 - wood
 - composite

Basic Foundation Requirements

- safe against instability or collapse
- no excessive/damaging settlements
- consider environment
 - frost action
 - shrinkage/swelling
 - adjacent structure, property lines
 - ground water
 - underground defects
 - earthquake
- economics

Generalized Design Steps

- calculate loads
- characterize soil
- determine footing location and depth
- evaluate soil bearing capacity
- determine footing size (unfactored loads)
- calculate contact pressure and check stability
- estimate settlements
- design footing structure* (factored loads)

Types of Foundations

- spread footings
- wall footings
- eccentric footings
- combined footings
- unsymmetrical footings
- strap footings

Types of Foundations

- mat foundations
- retaining walls
- basement walls
- pile foundations
- drilled piers

Shallow Footings

- spread footing
 - a square or rectangular footing supporting a single column
 - reduces stress from load to size the ground can withstand

Actual vs. Design Soil Pressure

- stress distribution is a function of
 - footing rigidity
 - soil behavior

 linear stress distribution assumed

Proportioning Footings

net allowable soil pressure, q_{net}

$$-q_{net} = q_{allowable} - h_f(\gamma_c - \gamma_s)$$

- considers all extra weight (overburden) from replacing soil with concrete
- can be more overburden
- design requirement with total unfactored load:

COLUMN

+ (IHI)

D (FT)

h_f (IH)

Concrete Spread Footings

- plain or reinforced
- ACI specifications
- P_{II} = combination of factored D, L, W
- ultimate strength
 - $-V_{\mu} \leq \phi V_{c}$: $\phi = 0.75$ for shear
 - plain concrete has shear strength
 - $-M_{IJ} \leq \phi M_{D}$: $\phi = 0.9$ for flexure

Concrete Spread Footings

failure modes

Figure 9.2 "Shear" failure in a spread footing loaded in a laboratory (Talbot, 1913). Observe how this failure actually is a combination of tension and shear.

shear

Figure 9.3 Flexural failure in a spread footing loaded in a laboratory (Talbot, 1913).

bending

Concrete Spread Footings

shear failure

one way shear

two way shear

Over and Under-reinforcement

reinforcement ratio for bending

$$-\rho = \frac{A_s}{bd}$$

- $-\rho = \frac{A_s}{bd}$ $use as a design estimate to find A_s,b,d$
- − max ρ from $\varepsilon_{\text{steel}} \ge 0.004$
- minimum for slabs & footings of uniform thickness $\frac{A_s}{}=0.002$ grade 40/50 bars =0.0018 grade 60 bars

Reinforcement Length

- need length, l_d
 - bond
 - development of yield strength

Figure 6.2.1 Development of reinforcement.

Figure 6.11.2 Development length L_{dh} for hooked bar.

Column Connection

- bearing of column on footing
 - $-P_u \le \phi P_n = \phi (0.85 f_c' A_1)$ $\phi = 0.65 \text{ for bearing}$
 - confined: increase x

· dowel reinforcement

- if $P_u > P_b$, need compression reinforcement
- min of 4 #5 bars(or 15 metric)

Wall Footings

- continuous strip for load bearing walls
- plain or reinforced
- behavior
 - wide beam shear
 - bending of projection
- dimensions usually dictated
 by codes for residential walls
- light loads

Eccentrically Loaded Footings

footings subject to moments

soil pressure resultant force <u>may not</u>
 <u>coincide</u> with the centroid of the footing

Differential Soil Pressure

- to avoid large rotations,
 limit the differential soil
 pressure across footing
- for rigid footing,
 simplification of soil
 pressure is a linear
 distribution based on
 constant ratio of pressure to settlement

Kern Limit

- boundary of e for no tensile stress
- triangular stress block with p_{max}

$$volume = \frac{wpx}{2} = N$$

$$p_{\text{max}} = \frac{2N}{N}$$

Guidelines

- want resultant of load from pressure inside the middle third of base (kern)
 - ensures stability with respect to overturning

$$SF = \frac{M_{resist}}{M_{overturning}} = \frac{R \cdot x}{M} \ge 1.5$$

- pressure under toe (maximum) $\leq q_a$
- shortcut using uniform soil pressure for design moments gives similar steel areas

Combined Footings

- supports two columns
- used when space is tight and spread footings would overlap or when at property line

- soil pressure might not be uniform
- proportion so pressure will uniform for sustained loads
- behaves like beam lengthwise

Combined Footing Types

- rectangular
- trapezoid

- strap or cantilever
 - prevents overturning of exterior column

- raft/mat
 - more than two columns over an extended area

Proportioning

- uniform settling is desired
- area is proportioned with sustained column loads
- want the resultant to coincide with <u>centroid</u> of footing area for uniformly distributed

pressure assuming a rigid footing

$$q_{max} \le q_a$$

Architectural Structures
ARCH 331

Retaining Walls

- purpose
 - retain soil or other material
- basic parts
 - wall & base
 - additional parts
 - counterfort
 - buttress
 - key

Retaining Walls

- considerations
 - overturning
 - settlement
 - allowable bearing pressure
 - sliding
 - (adequate drainage)

Retaining Walls

- procedure
 - proportion and check stability with working loads for bearing, <u>overturning</u> and <u>sliding</u>
 - design structure with factored loads

$$SF = \frac{M_{resist}}{M_{overturning}} \ge 1.5 - 2$$

$$SF = \frac{F_{horizontal-resist}}{F_{sliding}} \ge 1.25 - 2$$

Retaining Wall Proportioning

estimate size

- footing size, B ≈ 2/5 2/3 wall height (H)
- footing thickness ≈ 1/12 1/8 footing size (B)
- base of stem $\approx 1/10$ 1/12 wall height (H+h_f)
- *top of stem* ≥ 12"

Retaining Walls Forces

- design like cantilever beam
 - V_{II} & M_{II} for reinforced concrete
 - $-V_{\mu} \leq \phi V_{c}$: $\phi = 0.75$ for shear
 - $-M_{u} \leq \phi M_{n}$: $\phi = 0.9$ for flexure

Retaining Wall Types

- "gravity" wall
 - usually unreinforced
 - economical & simple

- cantilever retaining wall
 - common

Retaining Wall Types

- counterfort wall
- buttress wall

- very tall walls (> 20 25 ft)
- bridge abutment
- basement frame wall (large basement areas)

Deep Foundations

- usage
 - when spread footings, mats won't work
 - when they are required to transfer the structural loads to good bearing material
 - to resist uplift or overturning
 - to compact soil
 - to control settlements of spread or mat foundations

Deep Foundation Types

- piles usually driven, 6"-8" ϕ , 5' +
- piers
- caissons
- drilled shafts
- bored piles

drilled, excavated, concreted (with or without steel)

2.5' - 10'/12' ϕ

pressure injected piles

Deep Foundation Types

Deep Foundations

- classification
 - by material
 - by shape
 - by function (structural, compaction...)
- pile placement methods
 - driving with pile hammer (noise & vibration)
 - driving with vibration (quieter)
 - jacking
 - drilling hole & filling with pile or concrete

Piles Classified By Material

- timber
 - use for temporary construction
 - to densify loose sands
 - embankments
 - fenders, dolphins (marine)
- concrete
 - precast: ordinary reinforcement or prestressed
 - designed for axial capacity and bending with handling

Piles Classified By Material

- steel
 - rolled HP shapes or pipes
 - pipes may be filled with concrete
 - HP displaces little soil and may either break small boulders or displace them to the side

Piles Classified By Function

– end bearing pile (point bearing)

friction piles (floating)

Piles Classified By Function

- combination friction and end bearing

uplift/tension piles
 structures that float,

batter piles

towers

angled, cost more, resist large horizontal loads

Piles Classified By Function

- fender piles, dolphins, pile clusters

large # of piles in a small area

- compaction piles
 - used to densify loose sands
- drilled piers
 - eliminate need for pile caps
 - designed for bearing capacity (not slender)

Pile Caps and Grade Beams

- like multiple column footing
- more shear areas to consider

